Je vais expliquer une nouvelle preuve d'un théorème de Gabrielov des années 70 concernant le rang d'un germe d'application analytique. Ceci nous permet d'obtenir un résultat plus général que le résultat original de Gabrielov. Je vais montrer ensuite comment cet énoncé nous permet de montrer que l'ensemble des points Nash d'un ensemble sous-analytique est lui-même un ensemble sous-analytique, résultat démontré en 90 par Pawlucki.
La Conjecture de Sard classique prévoit que l’image de toutes les courbes singulières partant d’un point fixé sur une variété équipée d’une structure sous-riemannienne est de mesure nulle. Nous discuterons dans cet exposé d’une conjecture plus faible portant uniquement sur les courbes singulières de rang minimal. Nous expliquerons comment ce problème est relié, dans le cas analytique réel, aux propriétés de certains feuilletages sous-analytiques et présenterons des résultats positifs dans le cas de feuilletages dit « splittable ». Ceci est tiré d’un travail en collaboration avec André Belotto et Adam Parusinski.
We will prove two completeness results for Kleene algebra with a top element, with respect to languages and binary relations. While the equational theories of those two classes of models coincide over the signature of Kleene algebra, this is no longer the case when we consider an additional constant ``top'' for the full element. Indeed, the full relation satisfies more laws than the full language, and we show that those additional laws can all be derived from a single additional axiom. The proofs combine models of closed languages, reductions, a bit of graphs, and a bit of automata.
We consider a stochastic individual-based model for the evolution of a population, whose space of possible traits is given by the vertices of a finite graph. The dynamics is driven by births, deaths, competition, and mutations along the edges of the graph. We are interested in the large population limit under a mutation rate given by a negative power of the carrying capacity K of the system. This results in several mutant traits being present at the same time and competing for invading the resident population. We describe the time evolution of the orders of magnitude of each sub-population on the \log K time scale, as K tends to infinity. Using techniques developed in [Champagnat, Méléard, Tran, 2019], we show that these are piecewise affine continuous functions, whose slopes are given by an algorithm describing the changes in the fitness landscape due to the succession of new resident or emergent types. I will illustrate the theorem by examples describing surprising phenomena arising from the geometry of the graph and/or the rate of mutations. If time permits I will finish with an application to the phenomenon of evolutionary rescue.
In this talk, we introduce nonlinear diffusion equations with absorption, in the most general form
∂_t(u) = ∆u^m − |x|^σ u^p, for m > 1 and p > 0.
Looking for solutions to the Cauchy problem in a first part of the talk, we give a brief survey of general facts for the previous equation in the case of the spatially homogeneous absorption σ = 0, related to very singular solutions and finite time extinction of solutions: that is, the existence of a time Te ∈ (0, ∞) such that u(t) ≢ 0 for any t ∈ (0, Te), but u(Te) ≡ 0. In the second and more specialized part of the talk, we present some recent results including well-posedness, instantaneous shrinking of the supports of solutions, non-extinction versus extinction depending on the initial condition, and large time behavior for the general equation with σ > 0 and 0 < p < 1, emphasizing on the importance of the critical exponent σ := 2(1 − p)/(m − 1) and its influence on the dynamics of the equation.
Joint work with Philippe Laurençot (Univ. de Savoie, Chambéry) and Ariel Sánchez (Univ. Rey Juan Carlos, Madrid).
By clustering the polar curves of 2-variable function germs, in the Topological category, one may derive a bijective correspondence of a certain partition of polar quotients. In the case of the Lipschitz category, we explain how this bijective correspondence may be refined in terms of the gradient canyons. We will show how the tracking of the contact orders of the polar arcs and of the roots of a holomorphic 2-variable germ, induces a natural partition of the set of polar arcs into clusters, in such a way that the classical bijective correspondence of branches of topologically right-equivalent function germs induces a bijective correspondence of those clusters. (Clustering polar curves, Topology and its Applications 313 (2022) with P. Migus and M. Tibar.)
Dans cet exposé, nous présentons l'étude numérique du système type Boussinesq d'ordre supérieur/étendu décrivant la propagation des ondes de surface. Une reformulation appropriée équivalente est proposée, rendant le modèle plus approprié pour l'implémentation numérique et significativement amélioré en termes de propriétés dispersives linéaires dans les régimes à haute fréquence grâce à l'ajustement approprié d'un paramètre de correction de dispersion. De plus, nous montrons qu'un intérêt significatif se cache derrière la dérivation d'une nouvelle formulation du système de Boussinesq d'ordre supérieur/étendu qui évite le calcul des dérivées d'ordre supérieur existant dans le modèle. Nous montrons que cette formulation a l'avantage d'un domaine d'application étendu tout en restant stable. Nous développons un schéma de ``splitting'' du second ordre où la partie hyperbolique du système est traitée avec un schéma de volumes finis d'ordre élevé et la partie dispersive est traitée avec un schéma de différences finies. Des simulations numériques sont ensuite réalisées pour valider le modèle et les méthodes numériques.
La notion de consistance au sens de Lax-Wendroff (LW-consistance) est importante pour les applications pratiques en simulation d'écoulement de fluides. Dans de nombreux cas d'intérêt, des résultats plus forts de convergence sont hors de portée, et la LW-consistance permet d'aider à la conception mathématique des schémas numériques. C'est par exemple le cas pour les écoulements multidimensionnels gouvernés par des systèmes hyperboliques, tels que les équations d'eau peu profonde, les équations d'Euler ou les modèles pour les écoulements multiphasiques.
Les maillages décalés sont utilisés dans les codes de sûreté nucléaire développés par l'IRSN depuis plus de 15 ans pour la simulation numérique de problèmes d'écoulement de type hyperbolique, et sont maintenant couramment utilisés pour des applications de sécurité industrielle telles que les problèmes d'explosion d'hydrogène, pour des écoulements non visqueux ou au moins de viscosité négligeable.
Nous montrons ici comment les hypothèses de Lax et Wendroff peuvent être généralisés à des maillages décalés pour obtenir un résultat de LW consistance.
Dans l'étude du système de Boussinesq, nous allons revisiter les résultats obtenus par M. E. Schonbek concernant le problème d'existence de solutions faibles entropiques globales pour le système de Boussinesq, ainsi que l’existence et l’unicité de solution régulière globale par C. J. Amick. Il s’agit de rétablir ces résultats dans un cadre fonctionnel plus actuel et en utilisant une ``régularisation par un opérateur fractal”. Nous allons étudier le problème de Boussinesq régularisé et nous montrerons qu’on peut passer à la limite sur la solution de ce problème pour retrouver celle du système de Boussinesq. La méthode utilisée nous permet d’améliorer l’indice de régularité Sobolev pour le problème d’existence ainsi que l’obtention de la continuité des flots associés aux différents problèmes de Cauchy sous la condition du “non-zero-depth”. En même temps, on essayera d’indiquer quelques résultats en cours concernant le cas de fond non plat modilisé par le système de Boussinesq-Peregrine. Ce travail est effectué en collaboration avec L. Molinet et I. Zaïter.
Let X, Y be nonsingular real algebraic sets. A map φ : X → Y is said to be k- regulous, where k is a nonnegative integer, if it is of class Ck and the restriction of φ to some Zariski open dense subset of X is a regular map. Assuming that Y is uniformly rational, and k ≥ 1, we prove that a C∞ map f : X → Y can be approximated by k-regulous maps in the Ck topology if and only if f is homotopic to a k-regulous map. The class of uniformly rational real algebraic varieties includes spheres, Grassmannians and rational nonsingular surfaces, and is stable under blowing up nonsingular centers. Furthermore, taking Y = Sp (the unit p-dimensional sphere), we obtain several new results on approximation of C∞ maps from X into Sp by k-regulous maps in the Ck topology, for k ≥ 0
Gradient estimates for solutions to parabolic backward equations based on the Laplace operator are well understood. The Laplace operator naturally extends to non-local operators, where a large class of those non-local operators has an intrinsic connection to Lévy processes. The solutions to the corresponding non-local parabolic backward equations are of interest in applications, where the difference to the classical case is that the gradients of the solutions are infinite-dimensional in general. We investigate the singularity properties of those gradients and indicate an application of the obtained estimates.
In this talk we focus on a class of singular perturbation problems arising in the study of the dynamics of geophysical flows. Given a so-called ``primitive'' system of equations, the goal is to derive reduced models, under suitable assumptions on the fluid and on the scaling regime. The presence of a Coriolis term. encoding the Earth rotation, in the primitive system is the key element of the problems under consideration. We will discuss several aspects which enter into play in this context: the difference between the compressible and incompressible fluid cases, the presence of multiple scales, the formation of the Ekman boundary layers.
Let d, k be fixed coprime positive integers with min{d, k} > 1. A class of polynomial-exponential Diophantine equations of the form x^2 + d^y = k^z , x, y, z ∈ Z+ (1) is usually called the generalized Ramanujan-Nagell equation. It has a long history and rich content. In 2014, N. Terai discussed the solution of (1) in the case d = 2k − 1. He conjectured that for any k with k > 1, the equation x^2 + (2k − 1)^y = k^z , x, y, z ∈ Z+ (2) has only one solution (x, y, z) = (k − 1, 1, 2). The above conjecture has been verified in some special cases. In this work, firstly, using the modular approach, we prove that if k ≡ 0 (mod 4), 30 < k < 724 and 2k − 1 is an odd prime power, then under the GRH, the equation (2) has only one positive integer solution (x, y, z) = (k − 1, 1, 2). The above results solve some difficult cases of Terai’s conecture concerning the equation (2). Secondly, using various elementary methods in number theory, we give certain criterions which can make the equation (2) to have no positive integer solutions (x, y, z) with y ∈ {3, 5}. These results make up the defiency of the modular approach when applied to (2). This is a joint work with Maohua Le and Elif Kızıldere Mutlu.
[English version below]
Cet atelier vise à réunir les doctorants et les chercheurs sur le thème des Equations Diophantiennes et des Equations Algébriques, avec pour objectif l'étude de leurs solutions. Dans une première partie, les exposés sont consacrés à plusieurs types d'équations Diophantiennes :
In a second Part, we study the geometry of the solutions of a class of almost-Newman lacunary polynomials, constructed on trinomials, with coefficients 0, -1,+1. We show the links with
Rényi dynamical systems of numeration and the problem of the nontrivial minoration of the Mahler measure of reciprocal algebraic integers which are real, nonzero and not roots of unity.
Website and programme: https://diophantlehmer.sciencesconf.org/.
Depuis Fuchs, on sait associer à une équation différentielle linéaire homogène sur le corps des séries formelles $mathbb{C}((t))$ des exposants. Un nombre complexe $a$ est un exposant de l'équation s'il existe une série formelle $f(t)$ telle que l'équation ait une solution (symbolique) de la forme $t^a cdot f(t)$, où $t^a$ est juste un symbole. Ces nombres aident dans la classification de ces équations. Plus précisément, leur classe modulo les entiers, sont des invariants par isomorphismes du module différentiel associé à l'équation donnée. On rencontre toutefois un problème : si l'ordre de notre équation est $n$, le nombre d'exposants dans $mathbb{C}/mathbb{Z}$ est inférieur ou égal à $n$. En effet, les équations différentielles sur $mathbb{C}((t))$ sont complètement classifiées par la théorie de Galois différentielle et les exposants sont des classifiants (presque complets) de la classe d'isomorphisme de la partie régulière des modules différentiels. Pour les modules irréguliers sans partie régulière il n'y a pas d'exposants. Dans l'exposé on verra qu'en réalité on peut prolonger la théorie des exposants aux modules irréguliers par une méthode qui fait intervenir les groupes de Galois différentiels (ou plus précisément Tannakiens). Cela traduit l'idée qu'une solution générale d'une équation irrégulière est encore de la forme $t^a cdot f(t)$ modulo multiplication ultérieure par des fonctions exponentielles de la forme $exp(q(t))$ et des logarithmes $log(t)$ (théorème de Turrittin). Si le temps le permet, je vais également présenter en quelque mot comment cette méthode fonctionne aussi bien dans certains contextes spécifiques du monde $p$-adiques, qui présentent une forte analogie avec les séries formelles. Notamment, la même méthode permet d'obtenir une théorie des exposants p-adiques pour les équations différentielles, irrégulières ou pas, avec structure de Frobenius sur l'anneau de Robba (théorème de monodromie locale $p$-adique). Travail en collaboration avec M.D'addezio, C.Lazda, A.Pal
We propose a new system of equations modeling Tsunamis in this work. It is a coupled system accounting for both water compressibility and viscoelasticity of the earth. Adding these latter physical effects is responsible for the closest-to-reality time arrival predictions (among existing models), capturing the negative peak before the main wave hump, and exhibiting the negative dispersion phenomena. This comes in remarkable agreement with previous experiments and studies on the topic. The system is also delivered in a relatively simple mathematical structure of equations that is easy to solve numerically.
This talk shall focus on the presentation of a (by now) well studied research topic in the field of stochastic control theory, i.e the case of optimal switching control problems. A main objective of this talk is to provide the connection with system of semilinear PDEs with obstacles which, in addition, are inter- connected. This last feature (among some others) explains why the solution is not smooth (in general). For this reason we study existence and uniqueness of solutions of these PDEs in viscosity sense. In a first part, we shall explain the relationship between the value functional associated with a stochastic control problem and the solution of an explicit semi- linear PDE. For this, we need to introduce both the stochastic framework and some advanced probabilistic tools & technics. Next and after this introductory part, we shall give the precise structure of the system of PDEs we are interested in and provide some theoretical results. If time allows, the last slides present the main steps of one of our main results. This talk is based on several joint works (with Pr. S. Hamadène (LMM), Pr. B Djehiche (KTH Stockholm) and X. Zhao former pHD student at the LMM).
In this study, we propose a new hyperbolic model capable to capture the wave breaking phenomenon. The modelling of breaking waves is obtained by the depth- averaging method of Large-Eddy Simulations (LES) where the small scale turbulence is modeled by a turbulent viscosity, whereas the large scales are taken into account in the model by an anisotropic tensor variable called enstrophy. The hyperbolic structure is derived by replacing the depth-averaged non-hydrostatic pressure with an additional variable. The hyperbolisation of the equations is based on taking into account the finite character of the sound speed and introducing acoustic energy into the system. The resulting model can be viewed as a hyperbolic approximation of the Serre-Green-Naghdi (SGN) equations. Additionally, it has asymptotic dispersive properties to SGN equations as approaching to infinite sound speed. The treatment of breaking wave is to use the so-called switching method which certain terms describing the energy dissipation are activated once the wave breaks. So, we also present a more-robust breaking criteria on which only depends the local variables.
Solving boundary value problems requires implementation of sufficiently robust constitutive models. Most models try to incorporate a great deal of phenomenological ingredients, but this refining often leads to overcomplicated mathematical formulations, requiring a large number of parameters to be identified. On the other hand, geomaterials are known to have an internal microstructure, made up of an assembly of interacting particles. Most of the macroscopic properties, observed on a specimen scale or even on larger scales, mainly result from the microstructural arrangement of grains. Thus, a powerful alternative can be found with micromechanical models, where the medium is described as a distribution of elementary sets of grains. The inherent complexity is not related to the local constitutive description between particles in contact, but to the basic topological complexity taking place within the assembly. This presentation discusses this issue, highlighting very recent results obtained from discrete element simulations. In particular, the so-called critical state regime that develops during localized or diffuse failure is discussed in detail from the perspective of emerging processes taking place within complex media.
TBA