In this talk, I will show that smooth functions on convex bodies in Euclidean space, whose sequence of derivatives is dominated by a suitable given weight sequence of positive real numbers, have many polynomial-like properties. Let us call them “controlled differentiable functions” for brevity. Functions in quasianalytic Denjoy--Carleman classes are examples, but sometimes the results also apply in the non-quasianalytic setting.
I will introduce an integer, depending on the given weight sequence, the diameter of the domain, and the sup-norm of the function, which, in analogy to the polynomial degree, allows to express the polynomial-like behavior quantitatively. For instance, I will present a bound on the codimension one Hausdorff measure of the zero set and show that it can be locally parameterized by Sobolev functions. Moreover, I will discuss a Remez-type inequality and several applications for controlled differentiable functions. Many of the results depend only on the derivatives up to some finite order, which can be determined explicitly.
The local parameterization of the zero set by $W^{1,p}$ Sobolev functions is based on joint work with Adam Parusinski in which, for any smooth family of monic polynomials, we determined the optimal order of summability $p \ge 1$ (solely in terms of the degree) such that there is a $W^{1,p}$ choice of the roots.
Nerve theorems offer combinatorial characterisations of algebraic structures. Categorists have come up with nerve theorems for increasingly general classes of structures. The talk will consist of a gentle introduction to this theory, focusing on nerve theorems for so-called familial and analytic monads. The motivation for these monads is that they lend themselves well to defining structures graphically, in a suitable sense. Time permitting, we will touch upon work in progress towards defining higher-dimensional structures using this technology.
Je présenterai une introduction à mes articles récents avec Armin Rainer sur la perturbation des polynômes d'une ou plusieurs variables, et avec Guillaume Rond sur la perturbation des opérateurs linéaires. En particulier, nous avons considéré avec A. Rainer les racines de polynômes complexes unitaires d'une variable dont les coefficients dépendent de manière lisse d'un paramètre réel t. Nous avons montré qu'une telle racine, si elle est continue en t, est nécessairement localement absolument continue et nous avons donné une estimation optimale de sa régularité de Sobolev.
Dans un article avec Guillaume Rond, nous avons montré qu’une famille analytique de matrices normales dépendant d'un multiparamètre peut être localement diagonalisée analytiquement si le discriminant de son polynôme caractéristique est à croisement normal. On a un résultat similaire pour la décomposition des valeurs singulières des familles de matrices arbitraires.
La théorie de la perturbation des polynômes et des opérateurs linéaires est motivée par la théorie des équations à dérivées partielles.
As shown by Tsukada and Ong, normal (extensional) simply-typed resource terms correspond to plays in Hyland-Ong games, quotiented by Melliès’ homotopy equivalence. Though inspiring, their proof is indirect, relying on the injectivity of the relational model w.r.t. both sides of the correspondence — in particular, the dynamics of the resource calculus is taken into account only via the compatibility of the relational model with the composition of normal terms defined by normalization.
In the present talk, we revisit and extend these results. Our first contribution is to restate the correspondence by considering causal structures we call augmentations, which are canonical representatives of Hyland-Ong plays up to homotopy. This allows us to give a direct and explicit account of the connection with normal resource terms. As a second contribution, we extend this account to the reduction of resource terms: building on a notion of strategies as weighted sums of augmentations, we provide a denotational model of the resource calculus, invariant under reduction. A key step — and our third contribution — is a categorical model we call a resource category, which is to the resource calculus what differential categories are to the differential λ-calculus.
A result coming from Dulac, and proved independently by Écalle and Ilyashenko in the 80's, asserts that an analytic vector field in the real plane cannot have a sequence of limit cycles accumulating to a singular point. In this talk, we deal with this problem for analytic vector fields in dimension three, in a non-trivial but not too degenerated situation. Namely, the linear part at the singularity has two non-zero imaginary eigenvalues. We describe completely the distribution of all possible local cycles around the singularity, showing that there are no isolated ones in some neighborhood, which proves Dulac's property. Joint work with Nuria Corral and María Martín.
We investigate the energy decay of hyperbolic system of wave-wave with generalized acoustic boundary conditions in N-dimensional space, with the equations being coupled through boundary connection. First, by spectrum approach combining with a general criteria of Arendt-Batty, we prove that our model is strongly stable. Then, after proving that this system lacks the exponential stability, we establish different type of polynomial energy decay rates provided that the coefficients of the acoustic boundary conditions satisfy some assumptions. Further, we present some appropriate examples and show that our assumptions have been set correctly. Finally, we prove that the obtained energy decay rate is optimal in particular case.
Je vais expliquer une nouvelle preuve d'un théorème de Gabrielov des années 70 concernant le rang d'un germe d'application analytique. Ceci nous permet d'obtenir un résultat plus général que le résultat original de Gabrielov. Je vais montrer ensuite comment cet énoncé nous permet de montrer que l'ensemble des points Nash d'un ensemble sous-analytique est lui-même un ensemble sous-analytique, résultat démontré en 90 par Pawlucki.
La Conjecture de Sard classique prévoit que l’image de toutes les courbes singulières partant d’un point fixé sur une variété équipée d’une structure sous-riemannienne est de mesure nulle. Nous discuterons dans cet exposé d’une conjecture plus faible portant uniquement sur les courbes singulières de rang minimal. Nous expliquerons comment ce problème est relié, dans le cas analytique réel, aux propriétés de certains feuilletages sous-analytiques et présenterons des résultats positifs dans le cas de feuilletages dit « splittable ». Ceci est tiré d’un travail en collaboration avec André Belotto et Adam Parusinski.
We will prove two completeness results for Kleene algebra with a top element, with respect to languages and binary relations. While the equational theories of those two classes of models coincide over the signature of Kleene algebra, this is no longer the case when we consider an additional constant ``top'' for the full element. Indeed, the full relation satisfies more laws than the full language, and we show that those additional laws can all be derived from a single additional axiom. The proofs combine models of closed languages, reductions, a bit of graphs, and a bit of automata.
We consider a stochastic individual-based model for the evolution of a population, whose space of possible traits is given by the vertices of a finite graph. The dynamics is driven by births, deaths, competition, and mutations along the edges of the graph. We are interested in the large population limit under a mutation rate given by a negative power of the carrying capacity K of the system. This results in several mutant traits being present at the same time and competing for invading the resident population. We describe the time evolution of the orders of magnitude of each sub-population on the \log K time scale, as K tends to infinity. Using techniques developed in [Champagnat, Méléard, Tran, 2019], we show that these are piecewise affine continuous functions, whose slopes are given by an algorithm describing the changes in the fitness landscape due to the succession of new resident or emergent types. I will illustrate the theorem by examples describing surprising phenomena arising from the geometry of the graph and/or the rate of mutations. If time permits I will finish with an application to the phenomenon of evolutionary rescue.
In this talk, we introduce nonlinear diffusion equations with absorption, in the most general form
∂_t(u) = ∆u^m − |x|^σ u^p, for m > 1 and p > 0.
Looking for solutions to the Cauchy problem in a first part of the talk, we give a brief survey of general facts for the previous equation in the case of the spatially homogeneous absorption σ = 0, related to very singular solutions and finite time extinction of solutions: that is, the existence of a time Te ∈ (0, ∞) such that u(t) ≢ 0 for any t ∈ (0, Te), but u(Te) ≡ 0. In the second and more specialized part of the talk, we present some recent results including well-posedness, instantaneous shrinking of the supports of solutions, non-extinction versus extinction depending on the initial condition, and large time behavior for the general equation with σ > 0 and 0 < p < 1, emphasizing on the importance of the critical exponent σ := 2(1 − p)/(m − 1) and its influence on the dynamics of the equation.
Joint work with Philippe Laurençot (Univ. de Savoie, Chambéry) and Ariel Sánchez (Univ. Rey Juan Carlos, Madrid).
By clustering the polar curves of 2-variable function germs, in the Topological category, one may derive a bijective correspondence of a certain partition of polar quotients. In the case of the Lipschitz category, we explain how this bijective correspondence may be refined in terms of the gradient canyons. We will show how the tracking of the contact orders of the polar arcs and of the roots of a holomorphic 2-variable germ, induces a natural partition of the set of polar arcs into clusters, in such a way that the classical bijective correspondence of branches of topologically right-equivalent function germs induces a bijective correspondence of those clusters. (Clustering polar curves, Topology and its Applications 313 (2022) with P. Migus and M. Tibar.)
Dans cet exposé, nous présentons l'étude numérique du système type Boussinesq d'ordre supérieur/étendu décrivant la propagation des ondes de surface. Une reformulation appropriée équivalente est proposée, rendant le modèle plus approprié pour l'implémentation numérique et significativement amélioré en termes de propriétés dispersives linéaires dans les régimes à haute fréquence grâce à l'ajustement approprié d'un paramètre de correction de dispersion. De plus, nous montrons qu'un intérêt significatif se cache derrière la dérivation d'une nouvelle formulation du système de Boussinesq d'ordre supérieur/étendu qui évite le calcul des dérivées d'ordre supérieur existant dans le modèle. Nous montrons que cette formulation a l'avantage d'un domaine d'application étendu tout en restant stable. Nous développons un schéma de ``splitting'' du second ordre où la partie hyperbolique du système est traitée avec un schéma de volumes finis d'ordre élevé et la partie dispersive est traitée avec un schéma de différences finies. Des simulations numériques sont ensuite réalisées pour valider le modèle et les méthodes numériques.
La notion de consistance au sens de Lax-Wendroff (LW-consistance) est importante pour les applications pratiques en simulation d'écoulement de fluides. Dans de nombreux cas d'intérêt, des résultats plus forts de convergence sont hors de portée, et la LW-consistance permet d'aider à la conception mathématique des schémas numériques. C'est par exemple le cas pour les écoulements multidimensionnels gouvernés par des systèmes hyperboliques, tels que les équations d'eau peu profonde, les équations d'Euler ou les modèles pour les écoulements multiphasiques.
Les maillages décalés sont utilisés dans les codes de sûreté nucléaire développés par l'IRSN depuis plus de 15 ans pour la simulation numérique de problèmes d'écoulement de type hyperbolique, et sont maintenant couramment utilisés pour des applications de sécurité industrielle telles que les problèmes d'explosion d'hydrogène, pour des écoulements non visqueux ou au moins de viscosité négligeable.
Nous montrons ici comment les hypothèses de Lax et Wendroff peuvent être généralisés à des maillages décalés pour obtenir un résultat de LW consistance.
Dans l'étude du système de Boussinesq, nous allons revisiter les résultats obtenus par M. E. Schonbek concernant le problème d'existence de solutions faibles entropiques globales pour le système de Boussinesq, ainsi que l’existence et l’unicité de solution régulière globale par C. J. Amick. Il s’agit de rétablir ces résultats dans un cadre fonctionnel plus actuel et en utilisant une ``régularisation par un opérateur fractal”. Nous allons étudier le problème de Boussinesq régularisé et nous montrerons qu’on peut passer à la limite sur la solution de ce problème pour retrouver celle du système de Boussinesq. La méthode utilisée nous permet d’améliorer l’indice de régularité Sobolev pour le problème d’existence ainsi que l’obtention de la continuité des flots associés aux différents problèmes de Cauchy sous la condition du “non-zero-depth”. En même temps, on essayera d’indiquer quelques résultats en cours concernant le cas de fond non plat modilisé par le système de Boussinesq-Peregrine. Ce travail est effectué en collaboration avec L. Molinet et I. Zaïter.
Let X, Y be nonsingular real algebraic sets. A map φ : X → Y is said to be k- regulous, where k is a nonnegative integer, if it is of class Ck and the restriction of φ to some Zariski open dense subset of X is a regular map. Assuming that Y is uniformly rational, and k ≥ 1, we prove that a C∞ map f : X → Y can be approximated by k-regulous maps in the Ck topology if and only if f is homotopic to a k-regulous map. The class of uniformly rational real algebraic varieties includes spheres, Grassmannians and rational nonsingular surfaces, and is stable under blowing up nonsingular centers. Furthermore, taking Y = Sp (the unit p-dimensional sphere), we obtain several new results on approximation of C∞ maps from X into Sp by k-regulous maps in the Ck topology, for k ≥ 0
Gradient estimates for solutions to parabolic backward equations based on the Laplace operator are well understood. The Laplace operator naturally extends to non-local operators, where a large class of those non-local operators has an intrinsic connection to Lévy processes. The solutions to the corresponding non-local parabolic backward equations are of interest in applications, where the difference to the classical case is that the gradients of the solutions are infinite-dimensional in general. We investigate the singularity properties of those gradients and indicate an application of the obtained estimates.
In this talk we focus on a class of singular perturbation problems arising in the study of the dynamics of geophysical flows. Given a so-called ``primitive'' system of equations, the goal is to derive reduced models, under suitable assumptions on the fluid and on the scaling regime. The presence of a Coriolis term. encoding the Earth rotation, in the primitive system is the key element of the problems under consideration. We will discuss several aspects which enter into play in this context: the difference between the compressible and incompressible fluid cases, the presence of multiple scales, the formation of the Ekman boundary layers.
Let d, k be fixed coprime positive integers with min{d, k} > 1. A class of polynomial-exponential Diophantine equations of the form x^2 + d^y = k^z , x, y, z ∈ Z+ (1) is usually called the generalized Ramanujan-Nagell equation. It has a long history and rich content. In 2014, N. Terai discussed the solution of (1) in the case d = 2k − 1. He conjectured that for any k with k > 1, the equation x^2 + (2k − 1)^y = k^z , x, y, z ∈ Z+ (2) has only one solution (x, y, z) = (k − 1, 1, 2). The above conjecture has been verified in some special cases. In this work, firstly, using the modular approach, we prove that if k ≡ 0 (mod 4), 30 < k < 724 and 2k − 1 is an odd prime power, then under the GRH, the equation (2) has only one positive integer solution (x, y, z) = (k − 1, 1, 2). The above results solve some difficult cases of Terai’s conecture concerning the equation (2). Secondly, using various elementary methods in number theory, we give certain criterions which can make the equation (2) to have no positive integer solutions (x, y, z) with y ∈ {3, 5}. These results make up the defiency of the modular approach when applied to (2). This is a joint work with Maohua Le and Elif Kızıldere Mutlu.
[English version below]
Cet atelier vise à réunir les doctorants et les chercheurs sur le thème des Equations Diophantiennes et des Equations Algébriques, avec pour objectif l'étude de leurs solutions. Dans une première partie, les exposés sont consacrés à plusieurs types d'équations Diophantiennes :
In a second Part, we study the geometry of the solutions of a class of almost-Newman lacunary polynomials, constructed on trinomials, with coefficients 0, -1,+1. We show the links with
Rényi dynamical systems of numeration and the problem of the nontrivial minoration of the Mahler measure of reciprocal algebraic integers which are real, nonzero and not roots of unity.
Website and programme: https://diophantlehmer.sciencesconf.org/.