Au cours de cet exposé, j'introduirai deux approches qui aboutissent à la résolution de modèles non-locaux pour l'analyse de la dynamique sédimentaire. La première portera sur l'équation d' A.-C. Fowler qui correspond à l'équation de Burgers visqueuse modifiée par un terme non-local qui peut être identifié à un Laplacien fractionnaire anti-diffusif. Dans la seconde approche, nous utilisons les principes de minimisation pour décrire l'évolution d'un lit érodable sous l'action de l'eau. Il sera intéressant de constater que cette seconde méthode peut être liée à la première.
Dans cette exposé, nous proposons une nouvelle formulation des problèmes d'estimation de flot optique et de stéréo-vision qui repose sur une analogie avec les problèmes de débruitage. Le caractère mal posé de ces problème nous conduit à la régularisation par variation totale que nous controllons grâce a des modèles de décomposition.
On dérive un modele Eulerien d'interfaces diffuses pour l'interaction ``solide élasto-plastique - fluide compressible'' dans le cas de grandes déformations. Les applications du modèle aux problèmes d'impact seront présentées. Références 1. Favrie, N. and Gavrilyuk, S. (2011a) Mathematical and numerical model for nonlinear viscoplas- ticity, Phil. Trans. R. Soc. A, 369, 2864-2880. 2. Favrie, N. and Gavrilyuk, S. (2011b) Diuse interface model for compressible fluid-compressible elastic-plastic solid interaction, J. Computational Physics (soumis).
We discuss linearized stable and finite Morse Index solutions of weakly nonlinear elliptic equations on all of R(N) or half spaces and discuss their application to bounded domain problems where either the diffusion is small or the solutions are large.
L'étude des sensibilités de la solution d'une EDP par rapport aux paramètres et à la donnée frontière est un problème important du point de vue théorique et pratique. Je m'intéresse en particulier à l'existence d'incertitudes d'origine statistique (donc aléatoire) sur les paramètres et la donnée frontière. Du point de vue théorique, ce travail est basé sur la théorie des erreurs par formes de Dirichlet, développé par Nicolas Bouleau, qui propose un cadre rigoureux pour étudier le problème de transmission des incertitudes aléatoires. La première partie de l'exposé sera donc une présentation générale de cette approche, je vais souligner les liens avec les statistiques ainsi que la mise en pratique des outils dans les cadre des EDP. Dans une deuxième partie je vais présenter un exemple simple, l'équation de la chaleur, et montrer les premiers résultats intéressants. Enfin, je vais présenter l'application dans le cadre des EDP non-lineaires en prenant le cas des équations de Saint-Venant.
Dans cet exposé, on s’intéresse à la propagation dans un gaz moléculaire de champs électromagnétiques intenses et courts. Dans ce régime, les modèles classiques perturbatifs de type onde/Schrödinger non-linéaires étant non valides, un modèle micro-macro Maxwell- Schrödinger été ́établi. Le champ électromagnétique est modélisé par les équations de Maxwell macroscopiques, couplées (via une approche Particle-In-Cell) avec des équations de Schrödinger quantiques dépendantes du temps. Cette description ab-initio non-perturbative de la réponse du gaz au champ, permet d’inclure précisément les non-linéarités et harmoniques d’ordre élevé, ainsi que la génération de plasma d'électrons libres. Après une discussion sur les propriétés mathématiques du modèle, on s’intéressera à sa (coûteuse) discrétisation, et aux moyens proposés pour optimiser cette discrétisation (adaptation de maillage par MRA, conditions limites artificielles, etc). Finalement, on présentera des résultats numériques illustrant le bon comportement du modèle (auto-focalisation, défocalisation dû au plasma/non-linéariés d’ordre élevé).
It is well known that for general evolution problems it is not necessarily possible to infer linear stability from spectra. Known counterexamples include hyperbolic PDEs. A possible way out of this is to investigate criteria in addition to the spectrum which would imply stability. Such criteria are typically based on a WKB type approximation for short wave disturbances. In recent work by Shvydkoy, such criteria, originally developed for the Euler equations, are generalized to a class of equations he calls ``advective.'' It is proved that creeping flows of nonlinear viscoelastic fluids of Maxwell type fall into this category. Shvydkoy's results are for problems with periodic boundary conditions. If homogeneous Dirichlet conditions are imposed on the boundary, it can be shown that wall modes are spectrally determined, and stability can still be decided on the basis of Shvydkoy's criterion. In addition to the spectrum of the linearized operator, this involves determining the stability of a variable coefficient ODE system along each streamline of the base flow. It is also proved that linear stability implies nonlinear stability for small perturbations.
It is a well accepted point of view that the flow of amorphous media is realized via local plastic events that correspond to small rearrangements in the disordered structure. When such materials are actively deformed, the local plastic events will organize into avalanches, that span the whole system in the limit of small strain rates. In this talk I will describe how this cooperative behavior influences diffusion in the sheared material and I will show a direct relation between the diffusion coefficient and the dynamical susceptibility. Considering experiments this means that the measure of the often more easily accessible diffusion coefficient of tracer particles in a sheared disordered material can provide detailed inside into its microscopic rheology.
Dans ce travail commun avec D. Cohen-Steiner et F. Chazal, nous introduisons et étudions les mesures de bord d'un compact de l'espace Euclidien, qui sont étroitement reliées aux mesure de courbure introduites par Federer -- une notion courbure extrinsèque généralisée à une classe assez large de compacts de l'espace Euclidien. Notre but original est de faire de l'inférence géométrique, c'est-à-dire d'estimer des propriétés géométriques d'un 'objet' qu'on ne connaît qu'à travers un échantillon fini. Notre résultat principal est un théorème de stabilité qui permet d'utiliser les mesures de bord dans ce cadre: la mesure de bord d'un compact change peu lorsque celui-ci est remplacé par une approximation Hausdorff --- sans aucune hypothèse de régularité sur aucun des deux compacts. Ce théorème est quantitatif et optimal en un certain sens. En corollaire, on montre qu'il est possible d'approcher les mesures de courbure de Federer d'un compact (dans la classe considérée par Federer) à partir d'un échantillon fini suffisamment Hausdorff-proche. Les aspects algorithmiques du calcul seront brièvement discutés.
Des événements pluvieux sur des surfaces agricoles peuvent conduire à du ruissellement de surface. Ce ruissellement peut occasionner des effets indésirables. Au niveau du champ, le ruissellement peut être à l'origine de l'érosion du sol et du transport de polluants. En aval des champs, les constructions humaines peuvent-être dégradées. Afin de prévenir ces effets néfastes, il existe des moyens permettant de contrôler les écoulements d'eau tels que l'utilisation de bandes enherbées. Pour cela, nous devons prévoir les flux en eau à l'aide de simulations numériques. Ce type de problème est modélisé à l'aide du système de Saint-Venant. Nous utilisons un schéma volume fini équilibré basé sur la méthode de reconstruction hydrostatique, couplé avec un traitement semi-implicite du terme de friction. Nous avons effectué des validations de FullSWOF_2D (code de calcul en C++) sur des solutions analytiques, ainsi que sur des mesures expérimentales (INRA d'Orléans) et des mesures de terrain en Afrique (IRD).
Nous définissons d'une manière intrinsèque pour le système des équations de Navier-Stokes compressibles une classe spécifique des solutions faibles re-normalisées et convenables. Ces solutions vérifient en plus de l'équation de continuité et de l'équation du mouvement une inégalité d'entropie introduite par plusieurs auteurs. Nous démontrons l'existence de ces solutions puis étudions quelques propriétés, en particulier l'unicité forte-faible.
Dans cette présentation, on s'intéressera aux propriétés qualitatives des solutions régulières de l'équation des ondes semilineaire H^1-critique. Il est connu, notamment depuis les résultats obtenus par C. Kenig et F. Merle [Acta Mathematica, 2008], que la famille des minimiseurs de l'injection de H^1 dans L^{2^*} joue un role particulier dans la caractérisation des données initiales dont les solutions fortes associées explosent en temps fini. Je présenterai un résultat obtenu en collaboration avec P. Raphael sur le comportement des solutions de l'équation des ondes H^1-critique au voisinage de ces minimiseurs en dimension 4.